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The quantum ratchet effect in fully chaotic systems is approached by studying statistical properties of the
ratchet current over well-defined sets of initial states. Natural initial states in a semiclassical regime are those
that are phase-space uniform with the maximal possible resolution of one Planck cell. General arguments in
this regime, for quantum-resonance values of a scaled Planck constant �, predict that the distribution of the
current over all such states is a zero-mean Gaussian with variance �D�2 / �2�2�, where D is the chaotic-
diffusion coefficient. This prediction is well supported by extensive numerical evidence. The average strength
of the effect, measured by the variance above, is significantly larger than that for the usual momentum states
and other states. Such strong effects should be experimentally observable.

DOI: 10.1103/PhysRevE.81.036210 PACS number�s�: 05.45.Mt, 03.65.�w, 05.45.Ac, 05.60.Gg

I. INTRODUCTION

Understanding quantum transport in generic Hamiltonian
systems, which are classically nonintegrable and exhibit
chaos, is a problem of both fundamental and practical impor-
tance. The study of simple model systems has led to the
discovery of a variety of quantum-transport phenomena
�1–18�, several of which have been observed in atom-optics
experiments �2,3,16–18� and allow one to control the quan-
tum motion of cold atoms or Bose-Einstein condensates in
different ways. Recently, classical and quantum Hamiltonian
“ratchets” have started to attract a considerable interest, both
theoretically �10–15� and experimentally �16–18�. Ratchets
are usually conceived as spatially periodic systems with
noise and dissipation in which a directed current of particles
can emerge from an unbiased �zero-mean� external force due
to some spatial or temporal asymmetry �19�. In classical
Hamiltonian ratchets �10�, dissipation is absent and noise is
replaced with deterministic chaos. A basic general result for
Hamiltonian dynamics under an unbiased force is that the
average current of an initially uniform ensemble of particles
in phase space is zero �10�. As a consequence, a completely
chaotic system carries essentially no ratchet current. On the
other hand, the corresponding quantized system can feature
significant ratchet effects �11–18�. An important problem is
to understand the nature of these full-chaos quantum effects
in a semiclassical regime, in particular how precisely they
vanish—as expected—in the classical limit. All the studies of
quantum chaotic ratchets until now have mainly focused on
the impact of several kinds of asymmetries on the quantum
directed current from a fixed initial state. It is, however, well
established that the current is sensitive to the initial state
�10,12,13,15,17,18� and this sensitivity is expected to be es-
pecially high in a semiclassical full-chaos regime, reflecting
the exponential sensitivity of chaotic motion to initial condi-
tions. Thus, to get a comprehensive understanding of the
quantum ratchet effect, it is necessary to adopt a more global
approach, not limited to a single initial state.

In this paper, the semiclassical full-chaos regime of quan-
tum ratchets is approached by studying statistical properties
of the current over sets of initial states with well-defined
natural characteristics. The systems considered are generali-

zations of the paradigmatic kicked Harper models �KHMs�
�1,4–9,14,15�, with Hamiltonian

Ĥ = L cos�p̂� + KV�x̂� �
t=−�

�

��t� − t� , �1�

where L and K are parameters, x̂ and p̂ are scaled position
and momentum operators, V�x̂� is a general 2�-periodic po-
tential, t� is time, and t is the integer time labeling the kicks.
Generalized KHMs such as �1� describe several realistic sys-
tems �6,7,9,15�, in particular they are exactly related �6,7� to
kicked harmonic oscillators, which are experimentally real-
izable by atom-optics methods �3�, and to kicked charges in
a magnetic field �7�. Recently �14�, systems �1� were shown
to exhibit generically a significant and robust quantum mo-
mentum current �ratchet acceleration� under full-chaos con-
ditions. The initial state was chosen, as in other works, as a
zero-momentum state. In our statistical approach, we identify
natural initial states for the semiclassical regime as those that
are analogous as much as possible to a phase-space uniform
ensemble, for which classical ratchet effects are totally ab-
sent. These are states which are uniform in phase space with
the maximal possible resolution of one Planck cell. Such
uniformity is not featured by a momentum state which is
uniform in position but is infinitely localized in momentum.

Assuming quantum-resonance values of a scaled Planck
constant �= �x̂ , p̂� / i in the semiclassical regime, we derive an
estimate for the distribution of the quantum momentum cur-
rent I over maximally uniform initial states: this distribution
is a Gaussian with mean �I�=0 and variance ��I�2= �I2�
�D�2 / �2�2�, where D is the chaotic-diffusion coefficient. A
good agreement is found between this estimate and extensive
numerical results using an exact formula for I, which we also
derive. Examples are shown in Fig. 1 and will be discussed
further in Sec. IV. The average strength of the effect, mea-
sured by the variance above, is found to be significantly
larger than that for the usual momentum states and other
states exhibiting also zero-mean Gaussian current distribu-
tions �see the insets in Fig. 1 and Sec. IV�. Our results should
be experimentally observable to some extent using states ap-
proximating the maximally uniform states.
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The paper is organized as follows. In Sec. II, we define
maximally uniform states in phase space. The main result,
i.e., an estimate of the momentum-current distribution over
these states in a semiclassical full-chaos regime, is derived in
Sec. III. Numerical evidence for this result is provided in
Sec. IV, where we also study the momentum-current distri-
butions of states which approximate the maximally uniform
states; momentum states are the crudest approximating
states. Conclusions are presented in Sec. V, where we briefly
mention possible experimental realizations of the strong
quantum ratchet effects predicted. Detailed derivations of
some exact results are given in the Appendix.

II. MAXIMALLY UNIFORM STATES IN PHASE SPACE

Maximally uniform states in phase space are defined on

the basis of the translation operators T̂x�a�=exp�ip̂a /�� and

T̂p�b�=exp�−ix̂b /�� shifting x̂ and p̂ by a and b, respectively.
A state 	�� is uniform on the phase-space lattice with unit
cell formed by a and b if it is invariant under the application

of T̂x�a� and T̂p�b� up to constant phase factors: T̂x�a�	��
=exp�i��	�� and T̂p�b�	��=exp�−i	�	��. This means that 	��
is a simultaneous eigenstate of T̂x�a� and T̂p�b�, so that these

operators must commute. Using T̂x�a�T̂p�b�=exp

�−iab /��T̂p�b�T̂x�a�, we see that �T̂x�a� , T̂p�b��=0 only if ab
is a multiple of h=2��. Maximally uniform states 	�� cor-
respond to the smallest unit cell, i.e., the Planck cell with
area ab=h. In this case, one can easily check that the posi-
tion representation of the eigenstates 	�� is explicitly given
by �20�

�x	�w� =
1

b

�
n=−�

�

e2�inw2/b��x − w1 − na� , �2�

where w= �w1 ,w2� ranges in the Planck cell, 0
w1�a,
0
w2�b, and specifies the phases � and 	 above: �
=w2a /� and 	=w1b /�. States �2� for all w form a complete
and orthonormal set �20�. Simple choices of �a ,b� can be
made by observing that the one-period evolution operator for

�1�, Û=exp�−L cos�p̂� /��exp�−KV�x̂� /��, is 2�-periodic in
both �x̂ , p̂�. Thus, the torus T2 :0
x , p�2� is a reduced
phase space for the system. For simplicity, we shall assume
from now on that there are precisely an integer number N of
Planck cells within T2, choosing a=2� /N and b=2�. Then,
�=ab / �2��=2� /N, so that the semiclassical regime ��1
corresponds to N1. As it is well known �4,8�, the values
2� /N of � are those for which a classical-quantum corre-
spondence can be most easily established for systems de-
scribable on a phase-space torus. These values correspond to
the main quantum resonances in the semiclassical regime.

III. SEMICLASSICAL ESTIMATE OF THE
MOMENTUM-CURRENT DISTRIBUTION

The momentum-current operator Î can be formally de-

fined in the Heisenberg picture as Î=limt→� Û−tp̂Ût / t, for
integer time t. Then, the momentum current I�w� for initial

state �2� is the expectation value of Î in �2�. More precisely,

we show in the Appendix that in the basis of states �2� Î is

essentially represented by ��w	Î	�w��= I�w���w1−w1���
�w2−w2��, where I�w� is given by the explicit exact formula

I�w� = − ��
j=1

N

	� j�0;w�	2
�Ej�w�

�w1
. �3�

Here, � j�0;w� �with j=1, . . . ,N� are coefficients appearing
in expressions connecting states �2� with the N quasienergy

�Floquet� eigenstates 	� j,w� of the evolution operator Û for
�=2� /N and Ej�w� are the corresponding quasienergy
levels.

We now derive from general arguments the following es-
timate for the distribution ��I� of I�w� over w in a semiclas-
sical full-chaos regime:

��I� �
1


2��I
exp�−

I2

2��I�2�, ��I�2 �
2D

N2 =
D�2

2�2 ,

�4�

where D is the chaotic-diffusion coefficient. To derive Eq.
�4�, we first identify natural classical analogs of states �2�. To
this end, let us calculate the momentum representation
�p 	�w�=−�

� exp�−ipx /���x 	�w�dx of 	�w�. One has, up to an
irrelevant constant factor,

�p	�w� = �
n=−�

�

e−2�inw1/a��p − w2 − nb� . �5�

It is clear from the delta combs �2� and �5� that 	�w� is
associated with the phase-space lattice �x , p�=w+z�n�,
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FIG. 1. �Color online� Distributions of the normalized quantum
momentum current I /�I over maximally uniform states for �
=2� /121 in two extreme cases of fully chaotic systems �1� with
K=15: the symmetric case ‘‘S’’ with V�x�=cos�x� and L=K �red
squares, �I=0.086� and the strongly asymmetric case ‘‘A’’ with
V�x�=cos�x�+sin�2x� and L=K /2 �blue diamonds, �I=0.214�; the
latter case was studied in Ref. �14� for a zero-momentum initial
state. The origin of ratchet currents in case S is explained in Sec. IV.
The insets show the distribution of I /�I over momentum states in
case A with K=20 �left inset, �I=0.043� and over low-order ap-
proximations of the maximally uniform states in case S with K
=15 �right inset, �I=0.026�; see Sec. IV for more details. The solid
line in all plots is a zero-mean Gaussian with variance equal to 1.
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where z�n�= �n1a ,n2b�= �2�n1 /N ,2�n2� for all integers n
= �n1 ,n2�. In fact, one can easily show that the Husimi dis-
tribution of �2� is peaked on every point of the lattice w
+z�n�. This lattice, viewed as an initial phase-space en-
semble, is thus a classical analog of 	�w�. Next, consider the
classical one-period map M for systems �1�: pt+1= pt
+Kf�xt�, xt+1=xt−L sin�pt+1�, where f�x�=−dV /dx. For ini-
tial conditions z0= �x0 , p0�, the classical momentum current
in t iterations is Ic,t�z0�=�pt�z0� / t, where �pt�z0�= pt− p0.
Since the map M is clearly 2�-periodic in both x and p, one
can restrict z0 to the phase-space torus T2 :0
x , p�2�. Ac-
cordingly, the initial ensemble w+z�n� with z�n�
= �2�n1 /N ,2�n2� can be restricted to a finite lattice of N
points in T2 with n1=0 , . . . ,N−1 and n2=0. The classical

analog of the quantum current I�w� is the average Īc,t�w� of
Ic,t�z0�=�pt�z0� / t, with z0=w+z�n�, over this finite lattice,

Īc,t�w� =
1

Nt
�
n

�pt�w + z�n�� , �6�

for some time t to be specified below. Now, under strong-
chaos conditions �large K and L� and for sufficiently large t,
each of the N quantities �pt�w+z�n�� in Eq. �6� is expected
to behave diffusively, i.e., to be distributed over w approxi-
mately as a Gaussian with mean ��pt�=0 and variance
���pt�2��2Dt. Since these N quantities are associated with
N different initial points w+z�n� in the chaotic region, they
should behave as independent �uncorrelated� random vari-
ables. It then follows from the central limit theorem that for
large enough N the average current �6� is distributed over w
as a Gaussian with �Īc,t�=0 and �Īc,t

2 ��N���pt�2� / �Nt�2

�2D / �Nt�. This shows how �Īc,t
2 � decays to zero as t→�,

when chaotic orbits explore ergodically all the phase space.
Since there are precisely N Planck cells in T2, a typical such
orbit will explore phase space, after a time t�N, up to the
maximal quantum resolution of one Planck cell. Then, the
distribution of I�w� over w is expected to be approximately
the same as that of the classical currents �6� for t=N, i.e., a
zero-mean Gaussian with variance ��I�2= �I2��2D /N2; this
is Eq. �4�.

IV. NUMERICAL EVIDENCE AND
APPROXIMATING STATES

In this section, we provide numerical evidence for the
semiclassical estimate �4� using the exact formula �3� and
study the momentum-current distributions for states which
approximate the maximally uniform states; at the lowest or-
der of approximation, the approximating states are just mo-
mentum states. First, the distribution ��I� was calculated us-
ing Eq. �3� for several potentials V�x� and many large values
of K and L in Eq. �1�. A good agreement was generally found
between ��I� and a zero-mean Gaussian distribution for suf-
ficiently small �. As representative examples, Fig. 1 shows
distributions of I /�I in two extreme cases “S” and “A” de-
scribed in the caption. For the assumed quantum-resonance
values 2� /N of �, the origin of ratchet currents in the sym-
metric case S is the same as that already established in recent
theoretical �13� and experimental �17,18� works on quantum-

resonance ratchets: this is a relative asymmetry caused by the
noncoincidence of the symmetry centers of a symmetric po-
tential with those of a symmetric initial state. The potential
V�x�=cos�x� in case S has symmetry centers at x=0,� while
state �2� has them at x=w1 , w1+a /2. Thus, for generic val-
ues of w1, I�w��0.

Natural approximations of the maximally uniform states,
denoted in what follows by 	�w

�B�� for integer B, correspond to
truncations of the infinite sum in Eq. �5�,

�p	�w
�B�� = �

n=−B

B

e−2�inw1/a��p − w2 − nb� . �7�

States �7� are superpositions of the 2B+1 momentum states
	p=w2+nb�, 	n	
B, and should be experimentally realizable
�see the next section�. In particular, 	�w

�0�� are just momentum
states with p=w2. We denote by IB�w� the momentum cur-
rent for initial state �7� and by ��IB�2 the corresponding vari-
ance over w. The left inset in Fig. 1 shows the distribution of
IB�w� /�IB over w for B=0 �momentum states� in case A,
while the right inset shows it for B=2 in case S; the currents
for momentum states vanish in case S. The fact that these
distributions are again approximately zero-mean Gaussians
could be expected from the simple relation �A8� between
IB�w� and I�w� derived in the Appendix. Actually, we show
in the Appendix that this relation leads to the exact result

��IB�2 = �IB
2� 
 ��I�2 = �I2� . �8�

The quantities �I and �IB were extensively studied
as functions of several parameters. Consider the naturally
normalized variance R�N2��I�2 / �2Dql�, where Dql
=K20

2��f�x��2dx /2 is the “quasilinear” value of the diffusion
coefficient D, obtained from the KHM map M above by
neglecting all the force-force correlations Ct= �f�x0�f�xt��,
where t�0; for sufficiently strong chaos, D is very close to
Dql. The semiclassical estimate for the variance in Eq. �4�
would imply that R�D /Dql. Indeed, Fig. 2 shows a reason-
ably good agreement between R and D /Dql versus K in both
cases S and A. Discrepancies arise mainly around peaks of
D /Dql, especially the peak near K�6.5 in case S due to a
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FIG. 2. Filled circles: the quantity R=N2��I�2 / �2Dql� versus
K for N=2� /�=121 in cases S ��a�, Dql=K2 /4� and A ��b�, Dql

=5K2 /4� defined in the caption of Fig. 1. Crosses joined by a line:
D /Dql versus K.
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small accelerator-mode island. Thus, for general large K with
R�1, �I increases almost linearly with K like 
Dql.

Figure 3 shows log-log plots of �I versus N in cases S
and A. The results agree very well with the N−1 behavior
predicted by Eq. �4�. Figure 4 shows plots of �IB /�I versus
B in the two cases. We see that �IB is always smaller than
�I, in accordance with the exact inequality �8�, and ap-
proaches monotonically �I as the order B of approximation
increases. For small B, �IB is significantly smaller than �I
and attains its minimal value at B=0, corresponding to mo-
mentum states ��I0=0 in case S�. Within the limited domain
of N that we could study numerically, �IB appears to decay
with N like N�, where � ranges between −0.9 and −1.1 with
an error not smaller than �0.03.

V. CONCLUSIONS

In conclusion, we have presented a study of the semiclas-
sical full-chaos regime of the quantum ratchet effect using a
statistical approach which is most required in view of the
sensitivity of the effect to the initial state. For maximally
uniform states 	�w� in phase space, used here as natural ini-
tial states, the momentum-current distribution �4� exhibits
clear fingerprints of classical chaotic diffusion, a genuine

quantum-chaos phenomenon. The simple formula for the
variance in Eq. �4� involves just D and �2 and is thus inter-
estingly similar to the well-known one for the localization
length � in the kicked rotor �21�, ��D /�2 �in our notation�.
This variance was shown to be significantly larger than that
for momentum states �B=0 in Fig. 4�, which were standardly
used in previous works within the ordinary �single-state� ap-
proach. The states 	�w� then appear to give the strongest
quantum ratchet effect known until now.

One can approximate 	�w� to order B by states �7�, which
are superpositions of 2B+1 momentum states and whose
variance increases with B �see Fig. 4�. Superpositions of two
momentum states were recently used in experimental realiza-
tions of quantum-resonance ratchets �17,18�. States �7� can
be experimentally prepared for at least B�10 �22�. Also,
systems �1� are exactly related �6,7� to kicked harmonic os-
cillators that are experimentally realizable �3�. Thus, the cur-
rent distributions and the strong quantum ratchet effects pre-
dicted in this work should be observable to some extent in
the laboratory. More detailed aspects of our statistical ap-
proach and its extension to other systems and parameter re-
gimes will be considered in future studies.
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APPENDIX

We derive here formula �3� and inequality �8�. We start
with a summary of results from Ref. �8�. Since the evolution

operator Û=exp�−L cos�p̂� /��exp�−KV�x̂� /�� is 2�-periodic

in �x̂ , p̂�, it commutes with both T̂x�2��= T̂x
N�a� �a=2� /N�

and T̂p�b� �b=2��. Therefore, one can find simultaneous

eigenstates of Û, T̂x
N�a�, and T̂p�b�. The general eigenstates of

T̂x
N�a� and T̂p�b� are given in terms of �2� by

	� j,w� = �
m=0

N−1

� j�m;w�	�w1,w2+ma� . �A1�

Here, � j�m ;w�, where j=1, . . . ,N, form N independent
vectors of coefficients, V j�w�= �� j�m ;w��m=0

N−1, which

are determined from the eigenvalue equation Û	� j,w�
=exp�−iEj�w��	� j,w�, where Ej�w� are the quasienergies. It
is clear from Eq. �A1� that V j�w� are the representation of
	� j,w� in the N-basis 	�w1,w2+ma�, where m=0, . . . ,N−1. In

this basis, Û is represented by an N�N unitary matrix M̂�w�
with known elements �8�. Thus, M̂�w�V j�w�=exp
�−iEj�w��V j�w�. This completes the summary of relevant
results from Ref. �8�.

Let us now calculate the matrix element ��w	Î	�w��, where

Î=limt→� Û−tp̂Ût / t is the momentum-current operator. First,
we have

��w	Û−tp̂Ût/t	�w�� = ��w,t	p̂	�w�,t�/t , �A2�

where 	�w,t�= Ût	�w�. Using the completeness of the eigen-

vectors V j�w� of M̂�w�, i.e., � j=1
N � j

��m ;w�� j�m� ;w�=�m,m�,

3.9 4.3 4.7 5.1
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FIG. 3. �Color online� Log-log plots of �I versus N=2� /�
�49
N
169� for K=15 in case S �red squares, with linear fit hav-
ing slope �=−0.98�0.01� and in case A �blue diamonds,
�=−1.02�0.01�.

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

B

∆I
B
/∆

I

FIG. 4. �Color online� �IB /�I versus B for N=121 and K=15 in
case S �red squares� and in case A �blue diamonds�.
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we can invert Eq. �A1� to get 	�w�=� j=1
N � j

��0;w�	� j,w�. One
then has

��w,t	p̂	�w�,t� = �
j,j�=1

N

� j��0;w�� j
��0;w���Ût� j�,w	p̂	Ût� j,w�� .

�A3�

To determine the asymptotic behavior of Eq. �A3� for large

t, we use the equation Ût�x̂ , p̂�	� j,w�=exp�−itEj�w��	� j,w�,
the expansion �A1�, and the fact that p̂=−i�d /dx is
represented by −i�d /dw1 in basis �2� �20� due to the delta
comb in x. Using also the orthonormality of �2�, ��w 	�w��
=��w1−w1����w2−w2�� �20�, and of V j�w�, we find that the

dominant terms in �Ût� j�,w	p̂	Ût� j,w�� for large t give the
asymptotic behavior

�Ût� j�,w	p̂	Ût� j,w�� � − t�
�Ej�w�

�w1
� j,j���w1 − w1��

���w2 − w2��, t  1, �A4�

where we assume for simplicity that 0
w2 ,w2��a. After
inserting Eq. �A4� in Eq. �A3� and dividing by t, we get from

Eq. �A2� in the limit t→�: ��w	Î	�w��= I�w���w1−w1��
���w2−w2��, where I�w� is given by formula �3�.

To derive inequality �8�, we first notice that states �5� and
�7� can be easily related as follows:

	�w
�B�� = �

0

a

dw1�gB�w1� − w1�	�w1�,w2
� , �A5�

where

gB�w1� =
1


�2B + 1�a
�

n=−B

B

exp�2�inw1/a� . �A6�

The factor before the sum in Eq. �A6� assures the normaliza-
tion

�
0

a

dw1gB
2�w1� = 1. �A7�

Equation �A7� implies, because of ��w 	�w��=�

�w1−w1����w2−w2�� and ��w	Î	�w��= I�w���w1−w1����w2
−w2�� �see above�, that states �A5� satisfy the orthonormality
relation ��w1,w2

�B� 	�w1,w2�
�B� �=��w2−w2�� and ��w1,w2

�B� 	Î	�w1,w2�
�B� �

= IB�w���w2−w2��, where

IB�w� = �
0

a

dw1�gB
2�w1� − w1�I�w1�,w2� . �A8�

Then, �A8� is clearly the momentum current for initial state
�A5�.

Now, using Eq. �A7�, Eq. �A8�, and the Cauchy-Schwarz
inequality

��
0

a

dw1�F�w1��G�w1���2


 �
0

a

dw1�	F�w1��	
2�

0

a

dw1�	G�w1��	
2

with the identifications F�w1��=gB�w1�−w1�I�w1� ,w2� and
G�w1��=gB�w1�−w1�, we get

IB
2�w� 
 �

0

a

dw1�gB
2�w1� − w1�I2�w1�,w2� . �A9�

Using Eq. �A9� and, again, Eq. �A7� in the definition �IB
2�

=0
adw10

bdw2IB
2�w� /h, with �I2� similarly defined, we finally

obtain �IB
2�
 �I2�. This is inequality �8�, where ��IB�2= �IB

2�
since �IB�=0, as easily implied by Eq. �A8� and �I�=0.
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